Cell-Chip

The Cell-Chip counting chamber looks like the familiar Neubauer "improved" hemocytometer. However, the chambers are covered to provide more safety and consistent volume.

Count your cells as usual - With the Cell-Chip, you inject the sample, stained or unstained, into the desired chamber. Two separate counting chambers enable two counts per Cell-Chip.

Cell-Chip is highly recommended for hazardous material (HIV/AIDS, Ebola, H5N1 etc.) due to its safe-enclosure design.

Features

2x

IVD IVD Certified

Cell-Chip is compatible with automatic counters which helps you achieve fast, easy and consistent results.

2 Chambers

With its two chambers, every Cell-Chip can be used twice and therefore doubles its worth.

Useful products for your application

Seraglob provides scientists all over the world with first class serum, medium, reagents and additives.

Find more products and services at seraglob.com

Bioswisstec Lime Green Line High quality tissue culture flasks with 0.2µm sterile filter cap Product No. 900025 / 25 cm² Product No. 900075 / 75 cm² Product No. 900175 / 175 cm²

Quick, easy and safe:

- Minimal counting tolerances
- GMP compliant
- Clean-Room manufacturing
- Bio-Safe: minimized infection risk
- Easy to recycle
- Sterile, single wrapped

Product Data

Specification Cell-Chip with
counting grid Neubauer "improved"50 pcs., individually packagedProduct No.505050Dimensions25 x 75 x 1.6 mmVolume2 x 10 µlChamber depth0.1 mm

Fetal Bovine / Calf SerumHigh quality serum to give yourcells a head startProduct No.S 40500Unit Size500 mlMore atseraglob.com/sera

Bioswisstec AG

bioswisstec.com

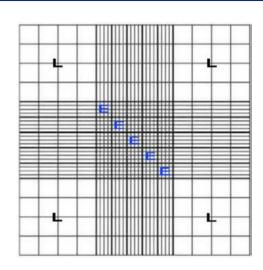
info@bioswisstec.com

Phone +41 52 620 33 44

Details & Instructions

Structure of the "improved" counting chamber

The counting chamber consists of 9 large squares (3x3), of which 4 are corner squares (L). The corner squares (L) are divided into 16 squares (4x4). The central square is divided into 5x5 squares (E) that are divided into 4x4.


Volume details for the L-squares

The area of the L-squares results from the edge lengths: $1 \text{ mm x } 1 \text{ mm} = 1 \text{ mm}^2$.

At a chamber depth of 0.1 mm this results in a volume of

0.1 mm 3 in the L-squares (conversion: 0.1 mm 3 correspond to 0.1 μl or 10 4 ml.)

Counting with the Cell-Chip

Le	ukocyte counting (1:20 dilution)	Amount of Leukocytes	
	Dilute blood using accepted laboratory methods Load 10 µl of diluted sample into the sample injection	leukocytes per ml =	
	area	cells in 4 corner squares / 4	
3.	Count the erythrocytes in the 5 small squares (four	x 20 (dilution factor)	
	small corner squares and one small middle square) of the large center square	x 10 ⁴ (volume factor)	
Ma	immalian Cell counting	Amount of Mammalian Cells	
	Treat the cell samples with Trypsin-EDTA.	mammalian cells per ml =	
	Carefully remove the supernatant with a pipette tip		
	without disturbing the pellet	cells in 5 large squares / 5	
3.	Add an appropriate volume of growth media or PBS to	x dilution factor	
	dilute to a final concentration of 5x10 ³ cells/ml to 5x10 ⁶	x 10 ⁴ (volume factor)	
Δ	cells per ml Thoroughly resuspend the cell pellet with a pipette		
	Check visually if there are any cell clumps or		
	agglomerates		
6.	Load 10 μ l of sample into the sample injection area		
	Count the cells in 5 large squares		
Ery	throcyte counting (1:200 dilution)	Amount of Erythrocytes	
	Dilute blood using accepted laboratory methods	erythrocytes per ml =	
2.	Load 10 μ l of diluted sample into the sample injection		
2	area	cells in 5 small squares x 5	
5.	Count the erythrocytes in the 5 small squares (four small corner squares and one small middle square) of	x 200 (dilution factor) x 10 ⁴ (volume factor)	
	the large center square		

Further applications and complementary products are available on our website

Bioswisstec AG

bioswisstec.com