Cell-Chip

The counting chamber looks like the familiar Neubauer "improved" hemocytometer: The cells are distributed over 3×3 large squares, each with 1 mm edge length and with a surface area of 1 mm².

Count your cells as usual - With the Cell-Chip, you inject the sample, stained or unstained, into the desired chamber. Two separate counting chambers enable two counts per Cell-Chip.

Quick, easy and safe:

- Minimal counting tolerances
- High precision
- minimized risk of infection
- easy to recycle
- sterile, single wrapped

Product	Cat. No.	Dimensions	Volume	Depth of chamber	Pieces/ sterile unit	Pieces/ Box
Cell-Chip with counting grid Neubauer "improved" Individually packaged	505050	25x75x1.6 mm	10 µl	0.1 mm	1 Chip (for 2 counts)	50 Chips

Useful products by Seraglob

Our label Seraglob provides scientists all over the world with first class serum, medium, reagents and additives. Find more products and services at seraglob.com

Trypan Blue

Stain your cells with a colorant to facilitate counting Cat. No. L 2001 Volume 100 ml More at seraglob.com/additives

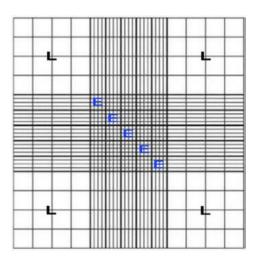
seraglob.com

Fetal Bovine / Calf Serum High quality serum to give your cells a head start Cat. No. S 40500 Volume 500 ml More at seraglob.com/sera

bioswisstec.com

Phone +41 52 620 33 44

Details & Instructions


Structure of the "improved" counting chamber

The counting chamber consists of 9 large squares (3x3), of which 4 are corner squares (L). The corner squares (L) are divided into 16 squares (4x4). The central square is divided into 5x5 squares (E) that are divided into 4x4.

Volume details for the L-squares

The area of the L-squares results from the edge lengths: $1 \text{ mm } x \text{ 1 mm} = 1 \text{ mm}^2$.

At a chamber depth of 0.1 mm this results in a volume of 0.1 mm³ in the L-squares (conversion: 0.1 mm³ correspond to 0.1 μl or 10⁻⁴ ml.)

Lei	Ikocyte counting (1:20 dilution)	Amount of Leukocytes
	Dilute blood using accepted laboratory methods Load 10 µl of diluted sample into the sample injection	leukocytes per ml =
	area	(cells in 4 corner squares/ 4)
3.	Count the erythrocytes in the 5 small squares (four	x 20 (dilution factor)
	small corner squares and one small middle square) of	x 10 ⁴ (volume factor)
	the large center square	
Ма	mmalian Cell counting	Amount of Mammalian Cells
	Treat the cell samples with Trypsin-EDTA.	mammalian cells per ml =
2.	Carefully remove the supernatant with a pipette tip	
	without disturbing the pellet	(cells in 5 large squares/5)
3.	Add an appropriate volume of growth media or PBS to	x dilution factor
	dilute to a final concentration of 5x10 ³ cells/ml to 5x10 ⁶	x 10 ⁴ (volume factor)
Δ	cells per ml Thoroughly resuspend the cell pellet with a pipette	
	Check visually if there are any cell clumps or	
5.	agglomerates	
6.	Load 10 μ I of sample into the sample injection area	
	Count the cells in 5 large squares	
Ery	throcyte counting (1:200 dilution)	Amount of Erythrocytes
-	Dilute blood using accepted laboratory methods	erythrocytes per ml =
	Load 10 µl of diluted sample into the sample injection	, , ,
	area	cells in 5 small squares x 5
3.	Count the erythrocytes in the 5 small squares (four	x 200 (dilution factor)
	small corner squares and one small middle square) of	x 10 ^₄ (volume factor)
	the large center square	

Counting with the Cell-Chip

Bioswisstec AG

bioswisstec.com